
Hans-Petter Halvorsen

https://www.halvorsen.blog

Tool Inventory
System

Tool Inventory System - Background

• A company has a room (inventory room) full of
expensive tools

• The tools are used by the employees in their daily
work

• The company wants to keep track of the tools in
this inventory room

• The door into the room has access control (ID card
is needed to open the door) but there is no
tracking of the tools

Tool Inventory System - Goals

• The system should track tools in the inventory,
i.e., track when someone borrow tools and
when someone return tools

• The system should have a card reader at the
door to the tool storage/inventory, which in
addition to unlocking the door means that the
tool that is taken out is registered on this
person.

Tool Inventory System – Suggested Solution

Registration Module

Database
(Data Storage)

Application for registration of
information about each tool

Tool Storage/Inventory

Communication
with Database

Rough sketch for solution to be implemented:

Functional Requirements
• The system should track tools in the inventory, i.e., track when

someone borrow tools and when someone return tools
• The system should have a card reader at the door to the tool

storage/inventory, which in addition to unlocking the door means
that the tool that is taken out is registered on this person.

• The system should automatically register the time and person in the
database when tools are taken out (/ in) of the inventory.

• The system should automatically register when a tool leaves the
inventory

• The inventory should have access control
• The following information should be stored for each tool: Tool

Number, Vendor, Model, Purchase Date, Calibration Date, Price,
Owner, Categories and Subcategories

Functional Requirements
• A program to easily add new tools or modify existing ones in

the database, preferably with a web interface for easier
access

• Create a graphical display application on a screen:
– If the tool is outside / inside
– When it was taken out
– Person who has taken the tool
– Possible picture of tools
– Here it is possibly desirable with a touch screen to be able to

browse the list, perhaps with a small search function or some
filtering options, but without access to make changes.

Functional Requirements

• It should be possible to get lists of available tools,
possibly who borrowed it and when, etc.

• It should be possible to send reminders to get
tools back, etc.

• It should be possible to add users, edit user
information and delete old non existing users

• The user needs to login to the web system with a
Username and a Password

• Possible to reserve tools that you need

Non-Functional Requirements
• The system shall use RFID tags for access control
• The system should be wireless, preferably using RFID tags for

tracking tools in the inventory
• The range for the RFID reader should be 2m
• The web application should be created using non-licensed

based software
• The Web Application should preferable be hosted on

Microsoft Azure because the customer already uses this
service

• The system and programs should be designed in such a way
that they are as general and configurable as possible.

Non-Functional Requirements
• The system should satisfy the GDPR and satisfy basic security

requirements, login, etc.
• The web application(s) should work with both Microsoft Edge and

Google Chrome
• The customer mainly wants a total solution that is as license free as

possible. Assessments must be made of development tools,
programming languages, frameworks, etc. so that this is taken care of
in the best possible way

• The User Passwords should have necessary security such as “Hashing”
• The system should be modularized for easy maintenance and further

development by the customer
• The code should be well structured and well documented to make it

possible for the customer to maintain and to further develop the
system

• Radio-frequency identification (RFID)
• RFID is the method of uniquely identifying items

using radio waves
• An RFID system comprises a tag, a reader, and an

antenna
• Unlike a barcode, the tag does not need to be within

the line of sight of the reader

RFID

https://en.wikipedia.org/wiki/Radio-frequency_identification

https://en.wikipedia.org/wiki/Radio-frequency_identification

RFID Parts
• An RFID tag in its most simplistic form, is comprised of two

parts – an antenna for transmitting and receiving signals, and
an RFID chip (or integrated circuit, IC) which stores the tag’s
ID and other information. RFID tags are affixed to items in
order to track them using an RFID reader and antenna.

• An RFID reader is the brain of the RFID system and is
necessary for any system to function

• RFID Antennas are necessary elements in an RFID system
because they convert the RFID reader’s signal into RF waves
that can be picked up by RFID tags

• Many RFID readers has an integrated antenna
https://www.atlasrfidstore.com/rfid-beginners-guide/

https://www.atlasrfidstore.com/rfid-beginners-guide/

RFID System Overview

RFID Tag
RFID Reader

RFID Antenna

PC (or a Microcontroller/Microcomputer, e.g., Arduino, Raspberry Pi, Intel NUC, …)

USB
RFID Reader and Antenna are typically in one unit. For
longer distance, a separate Antenna may be needed?

There are two types of RFID tags:
• Passive tags are powered by energy from the RFID

reader's interrogating radio waves.
• Active tags are powered by a battery and thus can be

read at a greater range from the RFID reader, up to
hundreds of meters.

RFID tags can be attached to physical objects,
clothing, and possessions, or implanted in
animals and people

RFID Tags

Inventory System - System Overview

Tool with RFID Tag

Server

Tool Management System

RFID Module

Internet

Database

Tools

Used by the Administrator to
Add, Edit, Delete Tools and Users

The User can get an overview of
available Tools in the Inventory

The User scan ID Card and Tool with RFID
Tag when going out of the Inventory door

Tool x has been
borrowed

Web Applications

Inventory System - Architecture

Tool with RFID Tag

Server

Tool Management System

RFID
Module

Internet

Database

Tools

Used by the Administrator to
Add, Edit, Delete Tools and Users

The User can get an overview of
available Tools in the Inventory

The User scan ID Card and Tool with RFID
Tag when going out of the Inventory door

Tool x has been
borrowed

SQL Server

Microsoft Azure

ASP.NET Core Web Applications

C# Desktop
(WinForm) App

NUC
Windows 10

Web
Application

Web
Application

RFID
Range

2m

Parallax USB RFID Reader

Windows
Server

Risk Analysis
• The RFID reader has not the necessary range
• Tool registered on wrong person if 2 persons are in the inventory and/o leave the

room at the same time
• Existing Access Card cannot be used because they don’t have RFID or different

standard is used
• Risk of GDPR violation
• Hacker attacks
• Data stored in a cloud service out of control of the company
• User data/information stored in 2 different systems (this system and existing access

control system)
• What if an ID Card has been stolen?
• A person uses an ID card that is not his (borrowed from another)
• The RFID Tag on the tool has fallen of
• The tools are used in a hazardous environment which can case that the RFID falls off

or is destroyed in some way

Hans-Petter Halvorsen

https://www.halvorsen.blog

Prototype

Prototyping Development Time
20-80 Rule:
• It takes 20% of the total development time to make the

system 80% finished (The main functionality but it lacks
robustness, systematic testing, etc.)

• It takes 80% of the time to finish the remaining 20% of the
system (Robustness, bug fixes, fin-tuning, change in
requirements and customer wants some changes or new
functionality, etc.)

• 80% of the users are only using 20% of the features in an
application

Hans-Petter Halvorsen

https://www.halvorsen.blog

RFID Reader

Parallax USB RFID Reader
User ID Cards with RFID for Access Control

RFID Tags for mounting on each toolhttps://www.parallax.com/product/rfid-card-reader-usb/

https://no.rs-online.com/web/p/identification-sensors/8430793

https://www.parallax.com/product/rfid-card-reader-usb/
https://no.rs-online.com/web/p/identification-sensors/8430793

Parallax USB RFID Reader
From Parallax USB RFID Reader Documentation
• It reads passive 125 kHz RFID transponder tags
• The Parallax RFID Card Reader USB version can be connected directly to any PC,

Macintosh, or Linux machine that has a USB port and the appropriate drivers
installed. The module is powered from the host computer’s USB port and uses an
industry-standard FTDI FT232R device to provide the USB connectivity

• A visual indication of the state of the RFID Card Reader is given with the on-board
LED. When the module is successfully powered-up and is in an idle state, the LED
will be GREEN. When the module is in an active state searching for or
communicating with a valid tag, the LED will be RED.

• The RFID Card Reader USB version is activated via the DTR line of the USB Virtual
COM port. When the DTR line is set HIGH, the module will enter the active state.
When the DTR line is set LOW, the module will enter the idle state.

• RFID Tag read distance of approximately 4 inches (10cm).

Parallax USB RFID Reader
Communication Protocol:
• The RFID Card Reader USB version transmits the

data through the USB Virtual COM Port driver
• All communication is 8 data bits, no parity, 1 stop

bit, and least significant bit first (8N1) at 2400 bps.
• When the RFID Card Reader is active and a valid

RFID transponder tag is placed within range of the
activated reader, the tag’s unique ID will be
transmitted as a 12-byte printable ASCII string
serially to the host in the following format:

Parallax USB RFID Reader
Communication Protocol:

The start byte and stop byte are used to easily identify that
a correct string has been received from the reader (they
correspond to line feed (\n)and carriage return (\r)
characters, respectively).
The middle ten bytes are the actual tag's unique ID.
For example, for a tag with a valid ID of 0F0184F07A, the
following bytes would be sent: 0x0A, 0x30, 0x46, 0x30,
0x31, 0x38, 0x34, 0x46, 0x30, 0x37, 0x41, 0x0D.

RFID Python Prototype

RFID Python Prototype

RFID LabVIEW Prototype

RFID LabVIEW Prototype

Re
ad

 R
FI

D
Ta

g
w

ith
 C

using System.IO.Ports;

SerialPort port = new System.IO.Ports.SerialPort("COM4", 2400, System.IO.Ports.Parity.None,
8, System.IO.Ports.StopBits.One);

port.Open();
port.DtrEnable = true;

int numberBytesToRead = 12;
byte[] data = new byte[numberBytesToRead];
port.ReadTimeout = 1000;
port.Read(data, 0, numberBytesToRead);

string rfidTag;
rfidTag = System.Text.Encoding.UTF8.GetString(data, 0, data.Length);

rfidTag = rfidTag.Replace("\n", "");
rfidTag = rfidTag.Replace("\r", "");

port.Close();

RFID C# Prototype

RFID C# Prototype
using System;
using System.IO.Ports;
using System.Windows.Forms;

namespace ReadRfidApp
{

public partial class Form1 : Form
{

string rfidTag;
SerialPort port = new System.IO.Ports.SerialPort("COM4", 2400, System.IO.Ports.Parity.None, 8, System.IO.Ports.StopBits.One);

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{ }

private void btnInitialize_Click(object sender, EventArgs e)
{

port.Open();
port.DtrEnable = true;

txtTagData.Text = "";
}

private void btnReadTag_Click(object sender, EventArgs e)
{

int numberBytesToRead = 12;
byte[] data = new byte[numberBytesToRead];
port.ReadTimeout = 1000;
port.Read(data, 0, numberBytesToRead);

rfidTag = System.Text.Encoding.UTF8.GetString(data, 0, data.Length);

rfidTag = rfidTag.Replace("\n", "");
rfidTag = rfidTag.Replace("\r", "");

txtTagData.Text = rfidTag;

port.Close();
}

}
}

Hans-Petter Halvorsen

https://www.halvorsen.blog

Applications
The applications are basic CRUD applications implemented in C# (WinForm and ASP.NET Core)

Inventory System - Applications

Tool with RFID Tag

Tool Management

Internet

Database

Tools

SQL Server

ASP.NET Core Web Applications

Desktop App

Web
Application

Web
Application

Tool Scanner 1

2
3

Hans-Petter Halvorsen

https://www.halvorsen.blog

Tool Scanner
(App #1)

ReadToolTag

Use Case Diagram
ScanIdCard

ReadIdCard

ScanTool

Loaner

RFID Reader

LoanTool

Database
ReturnTool

Tool Scanner (App #1)
C# WinForm Desktop Application

The User scan ID Card and Tool
with RFID Tag when going out of
the Inventory door

Tool Scanner (App #1) – Improved!
C# WinForm Desktop Application

The Tool Scanner Application
automatically scans the User ID
Card and the Tool he wants to
borrow when the person is leaving
the Inventory room through the
door.

No manual steps are required by
the user!

When the user return with the
Tool, the system will be
automatically updated

Hans-Petter Halvorsen

https://www.halvorsen.blog

Tool Management
(App #2)

ChangeLogin

Logout

EditUserEditTool

Use Case Diagram
Login

CreateTool

BorrowTool

ShowTools

Administrator

ReturnTool

CreateUser
Database

Tool Management (App #2)
ASP.NET Core Web Application

Used by the Administrator to
Add, Edit, Delete Tools and Users

Login

Update User Information

Borrow Tool

Tool Management

Tool Details

User/Person Management

Hans-Petter Halvorsen

https://www.halvorsen.blog

Tools
(App #3)

ReturnTool

ChangeLogin

Logout

Use Case Diagram
Login

BorrowTool

ShowTools

Loaner Database

ReserveTool

Tools (App #3)
ASP.NET Core Web Application The User can get an overview of

available Tools in the Inventory

Login

Update User Information

Search

Reserve Tool

Hans-Petter Halvorsen

https://www.halvorsen.blog

Database

Database (ER Diagram)
SQL Server

The Database Design (ER
diagram) has been created
with erwin Data Modeler

Stored Procedures
• NewPerson
• UpdatePerson
• DeletePerson

• NewTool
• DeleteTool
• UpdateTool

• BorrowTool
• BorrowToolById
• ReturnTool
• ReturnToolById
• SetToolStatus

Example
IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'NewTool'
AND type = 'P')
DROP PROCEDURE NewTool
GO

CREATE PROCEDURE NewTool
@ToolName varchar(100),
@ToolTag varchar(100),
@ToolDescription varchar(1000)
AS

if not exists (select * from TOOL where ToolName = @ToolName)
INSERT INTO TOOL (ToolName, ToolTag, ToolDescription, ToolInUse)
VALUES (@ToolName, @ToolTag, @ToolDescription, 0)

GO

Hans-Petter Halvorsen

https://www.halvorsen.blog

Visual Studio

Visual Studio

App #1 :Tool Scanner
(Desktop App)

App #2: Tool
Management (Web App)

App #3: Tools
(Web App)

App #2 and #3
share the same

Class Library

These 3 applications share
much of the same code.
That’s why a shared Class
Library has been used.

Classes
The following Classes have been
implemented in a shared Class
Library:
• Person
• Tool
• Login
• Rfid
The different Classes are dealing with separate
functionality of the applications. All these classes
communicate with the database

Class Diagram
This is the Initial Classes for the
Core Functionality.
More Classes and Methods may
be added later when more
functionality will be added.

Web Page: https://halvorsen.blog/documents/programming/web/aspnet
Videos:
• ASP.NET Core – Introduction

https://youtu.be/zkOtiBcwo8s
• ASP.NET Core – Database Communication

https://youtu.be/0Ta3dQ3rxzs
• ASP.NET Core - Database CRUD Application

https://youtu.be/k5TCZDwTYcE
• ASP.NET Core – Class Library

https://youtu.be/emUiMd1zRrY
• ASP.NET Core – Charts

https://youtu.be/mksUls9fx-Q
• ASP.NET Core – Session Data

https://youtu.be/I0SQ_XAoFvA

ASP.NET Core

https://halvorsen.blog/documents/programming/web/aspnet
https://youtu.be/zkOtiBcwo8s
https://youtu.be/0Ta3dQ3rxzs
https://youtu.be/k5TCZDwTYcE
https://youtu.be/emUiMd1zRrY
https://youtu.be/mksUls9fx-Q
https://youtu.be/I0SQ_XAoFvA

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

